Abstract

Superdeformed nuclei at high-spin states in several mass regions are investigated within a microscopic approach using cranked Nilsson-Strutinsky formalism to explore the equilibrium deformations in the ground state and their evolution with spin. Shape transition from normal deformed to superdeformed states with increasing spin is studied and a clear picture of shape coexistence is provided. Detailed information on spin, rotational energy, dynamical moment of inertia, and rotational frequency of superdeformed rotational bands is presented and the general features of superdeformed bands in certain mass regions are outlined. Rotational energy and dynamical moment of inertia are compared with available experimental data and the impact of temperature and pairing on superdeformed configuration are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.