Abstract

Two anionic complexes within a cationic lattice frame are the common structural element in all layered cuprate superconductors. One is the extensively investigated current carrying CuO 2 layer. It is assumed that the second one creates states near the Fermi level, too, and it is probably quasi-one-dimentional in nature not only for the 1-2-3 and 1-2-4 Y-Ba-Cu phases, but in all hole-doped cuprates, a fact not sufficiently appreciated up to now. The low dimensionality of the doping complex in connection with a strong electron deformation potential at the bridging oxygen may lead to a bipolaronic resonance which is capable of producing s-channel superconductivity as proposed by Friedberg and Lee [1] phenomenologically. Consequences for the temperature dependence of thermodynamic properties as the gap and the upper critical field resulting from a closely related Peierls transition in the chain subsystem are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.