Abstract
We developed a microscopic experimental method that transversely loads and images single high-performance fibers. The experimental set-up was inside the chamber of a scanning electron microscope (SEM). Force and displacement histories were recorded by the loading device. The SEM enabled in-situ observation of the fiber’s initial contact with the transverse indenter and subsequent deformation, crack initiation and propagation until the final failure. Within the loading device, fiber gauge length, indenter tip radius and loading direction can be varied as desired. To demonstrate the new experimental capability, initial results for a razor blade transversely cutting a Dyneema® SK76 fiber are presented in this paper. To avoid the effect from the conductive coating on the mechanical behavior of the fiber, a low vacuum detector was adopted to capture the deformation and failure of an uncoated fiber. These experiments revealed the damage and failure processes of single fibers with high-resolution micrographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.