Abstract

A rapid and simple enrichment system was developed on microfluidic chip which was integrated with on-line complexing and fluorescence detection. Microparticles of ion-exchange resin were trapped into the microchannel by a fabricated weir-structure in the end of the microchannel to construct a micro-solid-phase extraction (μ-SPE) device. Some commonly existing metal ions in environment were served as models to evaluate the performance of the proposed microdevice, in combination with on-line derivatization with 8-hydroxyquinolin-5-sulfonic acid (HQS) and fluorescence detection. The concentration and pH value of HQS solution were optimized for metal-HQS fluorescent derivatization. The parameters, which affected the efficiency of the developed method, including composition and concentration of eluent, pH value and the flow rate of HQS solution and elution, were also investigated. Under the optimal conditions, Ca(2+), Mg(2+), Zn(2+) and Pb(2+) were successfully determined by the μ-SPE device on-chip. The experimental enrichment factors for Ca(2+), Mg(2+), Zn(2+) and Pb(2+) were up to 520, 565, 578 and 487 folds, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.