Abstract

Computational micromechanics of fibre-reinforced polymers (FRPs) relies on the ability of the representative volume elements (RVEs) to take into account the different features that characterise the geometry of the material system under consideration. Fibre misalignment has been proven experimentally to have a significant effect on the mechanical properties at the macroscale, but is not currently taken into consideration in models at the individual fibre level, perhaps due to the difficulty in statistically characterising the fibre misalignment. In this work, an integrated approach is presented to measure and model fibre misalignments in FRPs. A computed tomography (CT) scan is used to identify the fibre geometry and statistically characterise the fibre misalignment angle distribution. Using a methodology recently developed by the authors, three-dimensional (3D) RVEs were generated by requiring their misalignment angle distribution to fit the empirical distribution. The methodology proposed provides a framework for the systematic numerical analysis of the influence of fibre misalignment on mechanical properties of FRPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.