Abstract

Powdery mildew caused by the biotrophic ascomycete fungus Erysiphe pisi Syd. is one the most devastating diseases of peas (Pisum sativum L.) with enormous impact in seed production. The most efficient genetic resistance to this disease, so far identified, is conferred by the naturally occurring or experimentally induced by chemical mutagenesis recessive state of the locus er1. Genetically mapped over 2 decades ago, this gene was recently identified as a homolog of the barley (Hordeum sativum L.) powdery mildew resistance gene MLO, and renamed as PsMLO1. The broad wide resistance conferred by the er1/PsMLO1 locus was found to be a consequence of the loss of function of the encoded PsMLO1 protein. After the publication of the expressed sequence of this gene by another research group, we published the genomic sequences of this gene which harbors a relatively long (TA) microsatellite sequence (SSR) in the fifth intron. SSR markers based on this highly polymorphic microsatellite can be used for marker-assisted selection in multiple pea powdery mildew resistance breeding programs involving the er1/PsMLO1 resistance, except in the rare circumstances where the progenitor lines are monomorphic for the microsatellite sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.