Abstract

This paper presents a semi-automated microrobotic system for adherent cell injection. Different from embryos/oocytes that have a spherical shape and regular morphology, adherent cells are flat with a thickness of a few micrometers and are highly irregular in morphology. Based on computer vision microscopy and motion control, the system coordinately controls a three-degrees-of-freedom microrobot and a precision XY stage. The microrobotic system demonstrates an injection speed of 25 endothelial cells per minute with a survival rate of 96% and a success rate of 82% (n=1012). The system has a high degree of performance consistency. It is immune to operator proficiency variations and from human fatigue, requiring a human operator to select injection destinations through computer mouse clicking as the only operator intervention. The microrobotic adherent cell injection system makes the injection of thousands of adherent cells practical and will enable our testing of intracellular behavior of semiconductive quantum dots (QDs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call