Abstract
Developing highly efficient electrocatalysts for oxygen evolution is vital for renewable and sustainable energy production and storage. Herein, nitrogen-doped carbon encapsulated CoOx-MoC heterostructures are reported for the first time as high performance oxygen evolution electrocatalysts. The composition can be tuned by the addition of a Mo source to form a nanowire-assembled hierarchically porous microstructure, which can enlarge the specific surface area, thus exposing more active sites, facilitating mass transport and charge transfer. Moreover, it is demonstrated that the formation of CoOx-MoC heterostructures and the resulting synergistic effect between MoC and Co facilitate the reaction kinetics, leading to significantly improved oxygen evolution reaction (OER) activity with an onset overpotential of merely 290 mV, and a low overpotential of 330 mV to afford a current density of 10 mA cm-2 . The well-constructed microarchitecture contributes to superior long term stability electrochemical behaviors. This work provides a facile strategy via composition tuning and structure optimization for the development of next-generation nonprecious metal-based OER electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.