Abstract

Abstract A novel fast pyrolysis microreactor was developed to facilitate control over feedstock dwell time, pyrolysis temperature, and the individual collection of pyrolysis liquid and solid products. The design process followed is presented including design requirements, functional decomposition, commissioning tests, and the final microreactor design. A vibratory assisted spreading study was performed as particle agglomeration was a key challenge within the reactor design. The study results and analysis of variance are presented identifying the most significant factor and a best operating point. Analytical and experimental heat transfer analyses are also presented to validate the reactor’s thermal performance. Through the pairing of the analyses, projections for thin biomass layer heating rates are made resulting in estimates on the order of 400°C/s. Finally, experimental pyrolysis results are given showing fast pyrolysis conversion as a function of time and the process by which kinetic descriptors could be derived using this system’s results. Yield results are compared with literature and are found to be in good agreement with published fast pyrolysis results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.