Abstract

A digital Class-D amplifier comprises a pulsewidth modulator (PWM) and an output stage. In this paper, we simplify the time-domain expression for the algorithmic PWM linear interpolation (LI) sampling process and analytically derive its double Fourier series expression. By means of our derivation, we show that the nonlinearities of the LI process are very low, especially given its modest computation complexity and low sampling frequency. In particular, the total-harmonic distortion (THD) /spl ap/0.02% and foldback distortion is -98.4 dB (averaged from modulation indexes M=0.1 to 0.9) for the 4-kHz voiceband bandwidth @1-kHz input, 48-kHz sampling. We also describe a simple hardware for realizing the LI process. We propose a frequency doubler (with small overheads) for the pulse generator for the PWM, thereby reducing the counter clock rate by 2, leading to a substantial /spl sim/47% power dissipation reduction for the Class-D amplifier. By means of computer simulations and on the basis of experimental measurements, we verify our double Fourier series derivation and show the attractive attributes of a Class-D amplifier embodying our simplified LI sampling expression and reduced clock rate pulse generator. We show that our Class-D amplifier design is micropower (/spl sim/60 /spl mu/W @1.1 V and 48-kHz sampling rate, and THD /spl ap/0.03%) and is suitable for practical power-critical portable audio devices, including digital hearing aids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.