Abstract

Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g-1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g-1 ) and Xe uptake (1.29 mmol g-1 ), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C-H⋅⋅⋅Xe interactions with Xe atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call