Abstract

ABSTRACT Solid polycrystalline materials undergoing diffusion creep are usually described by Cauchy continuum models with a Newtonian viscous rheology dependent on the grain size. Such a continuum lacks the rotational degrees of freedom needed to describe grain rotation. Here we provide a more general continuum description of diffusion creep that includes grain rotation, and identifies the deformation of the material with that of a micropolar (Cosserat) fluid. We derive expressions for the micropolar constitutive tensors by a homogenisation of the physics describing a discrete collection of rigid grains, demanding an equivalent dissipation between the discrete and continuum descriptions. General constitutive laws are derived for both Coble (grain-boundary diffusion) and Nabarro-Herring (volume diffusion) creep. Detailed calculations are performed for a two-dimensional tiling of irregular hexagonal grains, which illustrates a potential coupling between the rotational and translational degrees of freedom. If only the plating out or removal of material at grain boundaries is considered, the constitutive laws are degenerate: modes of deformation that involve pure tangential motion at the grain boundaries are not resisted. This degeneracy can be removed by including the resistance to grain-boundary sliding, or by imposing additional constraints on the deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.