Abstract

Chirality is an intrinsic cellular property, which depicts the asymmetry in terms of polarization along the left-right axis of the cell. As this unique property attracts increasing attention due to its important roles in both development and disease, a standardized quantification method for characterizing cell chirality would advance research and potential applications. In this protocol, we describe a multicellular chirality characterization assay that utilizes micropatterned arrays of cells. Cellular micropatterns are fabricated on titanium/gold-coated glass slides via microcontact printing. After seeding on the geometrically defined (e.g., ring-shaped), protein-coated islands, cells directionally migrate and form a biased alignment toward either the clockwise or the counterclockwise direction, which can be automatically analyzed and quantified by a custom-written MATLAB program. Here we describe in detail the fabrication of micropatterned substrates, cell seeding, image collection, and data analysis and show representative results obtained using the NIH/3T3 cells. This protocol has previously been validated in multiple published studies and is an efficient and reliable tool for studying cell chirality in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call