Abstract

AbstractDisorders of the inner parts of blood vessels have been significant triggers of cardiovascular diseases (CVDs). Different interventional methods have been employed, from complex surgeries to balloon angioplasty techniques to open the narrowed blood vessels. However, CVDs continue to be the lead cause of death in the world. Delivering a therapeutic agent directly to the inner wall of affected blood vessels can be a transformative step toward a better treatment option. To open the door for such an approach, a catheter delivery system is developed based on a conventional balloon catheter where a fluidic channel and microneedles (MNs) are integrated on top of it. This enables precise and localized delivery of therapeutics directly into vessel walls. Customizable MNs are fabricated using a high‐resolution 3D printing technique where MN's height ranges from 100 to 350 µm. The MNs penetration into a synthetic vascular model is investigated with a computerized tomography scan. Ex vivo tests on rabbit aorta confirm the MN‐upgraded balloon catheter's performance on real tissue. Delivery of fluorescent dye is accomplished by injecting it through the fluidic channel and MNs into the aortic tissue. The dye is observed at up to 180 µm of depth, confirming site‐specific endovascular delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.