Abstract

In this paper, a simple micromechanics model has been developed for predicting the effective stress–strain relations of filled elastomers. The present model constitutes of the instantaneous Young’s modulus and Poisson’s ratio characterizing rubber-like material, a double-inclusion configuration taking account of the absorption of rubber chains onto carbon-black (CB) particles, and the incremental Mori–Tanaka method to compute the effective stress–strain curves. The subsequent predictions are capable of reflecting the well-known S-shape of hyper-elastic composites, and verified via the comparison to the available experiments and analytical models. Parametric analysis is fatherly conducted on the microstructure effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call