Abstract
In this work, the wear behaviour of coated components subjected to sliding contact conditions is investigated using a multiscale micromechanics approach. Periodic unitcell-type continuum mechanics models are used to predict localized deformation patterns at the scale of the coating thickness (mesoscale) and the rate of material removal due to repeated sliding contact. To that purpose, realistic contact loads determined at the component level (macroscale) are applied at the mesoscopic level. The results indicate that the deformation of the coating is controlled by the cyclic accumulation of plastic deformation, or ratchetting, at the coating subsurface. Based on a ratchetting failure criterion, a wear equation is proposed and applied to investigate parametrically the in®uence of the principal material, loading and surface roughness parameters on the wear rate. The results reveal that the wear rate increases with contact pressure and depends on coating thickness and the roughness of the
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.