Abstract

AbstractThe macroscopic response of short fiber reinforced composites (SFRCs) is dependent on an extensive range of microstructural parameters. Thus, micromechanical modeling of these materials is challenging and in some cases, computationally expensive. This is particularly important when path‐dependent plastic behavior is needed to be predicted. A solution to this challenge is to enhance micromechanical solutions with machine learning techniques such as artificial neural networks. In this work, a recurrent deep neural network model is trained to predict the path‐dependent elasto‐plastic stress response of SFRCs, given the microstructural parameters and the strain path. Micromechanical mean‐field simulations are conducted to create a database for training the validating the model. The model gives very accurate predictions in a computationally efficient manner when compared with independent micromechanical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.