Abstract
Phase-change composites have a wide range of tunable mechanical properties caused by temperature-driven phase transition, and have been widely applied in many cutting-edge fields like soft robotics. Previous studies on the effective mechanical properties of phase-change composites mostly use experimental methods, and there have been few theoretical approaches. In this work, we develop a micromechanical framework capable of tracking the effective mechanical properties of phase-change composites throughout the entire phase transition. The phase-change materials embedded in the composites are modelled as inclusions, and the non-phase-change materials are modelled as the matrix. This allows us to determine the effective mechanical properties of phase-change composites via the energy equivalency approach. Moreover, since the new phase will be generated inside the phase-change inclusions in the form of sub-inclusions during the phase transition, the inclusions are modelled as two-phase composites, and their effective mechanical properties are then determined using the Mori–Tanaka method. Finally, by comparing theoretical predictions with experimental data, the accuracy and reliability of the present model are verified. We believe that the proposed model can serve as a powerful tool for evaluating the effective mechanical properties of phase-change composites and provide theoretical guidelines for the design of advanced devices with tunable mechanical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.