Abstract

In the present work, a methodology is presented for the assessment of bridging laws for continuous fibre-reinforced ceramic matrix composites based on material properties as well as micromechanics of fibre deformation and failure. A load–displacement model is initially formulated that utilizes weakest-link statistical concepts to analyse and relate the individual contributions of matrix, intact/bridging and failed/pull-out fibres during the composite fracture process. The total and individual contributions to the bridging law and crack growth resistance of the material are determined by identifying the non-elastic part of displacement as crack opening. The model is validated against the experimentally recorded load–displacement behaviour of a notched SiC-fibre-reinforced glass–ceramic matrix composite tested under monotonic tension. The output parameters of the converged regression procedure remain within a small scattering range from the corresponding mean values that compare favourably with known material properties. A parametric analysis of the effect of fibre volume fraction, Weibull modulus of fibres and interfacial shear stress in overall composite performance is presented in view of the ability of the model to serve as an a priori fracture prediction tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call