Abstract

As one of the most harmful ions in the environment, sulfate could cause the deformation and material deterioration of concrete structures. Models that accurately describe the whole chemo-transport-mechanical process of an external sulfate attack (ESA) require substantial computational work and contain complex parameters. This paper proposes a semi-empirical model based on micromechanical theory for predicting the compressive strength degradation of concrete under an ESA with basic properties of the undamaged material and limited computational effort. A simplified exponential function is developed for the total amount of the invading sulfate, and a second-order equation governs the chemical reaction. A micromechanical model is implemented to solve the mechanical response caused by an ESA. The model is able to describe the compressive stress-strain behavior of concrete subject to uniaxial loading in good agreement with the experimental results. For the case of a sulfate-attacked material, the relationship between compressive strength and expansion is calculated and validated by the test results. Finally, the deterioration process of compressive strength is predicted with the test results of deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.