Abstract

The effect of surface layer modification on the deformation-induced surface roughening in polycrystalline materials is investigated numerically. Three-dimensional constitutive models of as-received and surface-hardened polycrystals are constructed and implemented in finite-difference calculations. The free surface is shown to undergo out-of-plane displacements due to microscale stresses developing in the subsurface layer and acting across the free surface. The surface-hardened layer as thin as half the grain diameter efficiently suppresses grain-scale surface displacements. The thicker is the hardened layer, the smoother is the surface of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call