Abstract

Microhot-film shear-stress sensors have been developed by using surface micromachining techniques. The sensor consists of a suspended silicon-nitride diaphragm located on top of a vacuum-sealed cavity. A heating and heat-sensing element, made of polycrystalline silicon material, resides on top of the diaphragm. The underlying vacuum cavity greatly reduces conductive heat loss to the substrate and therefore increases the sensitivity of the sensor. Testing of the sensor has been conducted in a wind tunnel under three operation modes-constant current, constant voltage, and constant temperature. Under the constant-temperature mode, a typical shear-stress sensor exhibits a time constant of 72 /spl mu/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.