Abstract
Let M be a holonomic algebraic D-module on the affine line. Its exponential factors are Puiseux germs describing the growth of holomorphic solutions to M at irregular points. The stationary phase formula states that the exponential factors of the Fourier transform of M are obtained by Legendre transform from the exponential factors of M. We give a microlocal proof of this fact, by translating it in terms of enhanced ind-sheaves through the Riemann–Hilbert correspondence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.