Abstract

This paper presents the technical proposal of a novel approach based on Ant Colony Optimization (ACO) to recommend personalized microlearning paths considering the learning needs of the learner. In this study, the information of the learner was considered from a disciplinary ICT perspective, since the characteristics of our learner correspond to those of a professor with variable characteristics, such as the level of knowledge and their learning status. The recommendation problem is approached as an instance of the Traveling Salesman Problem (TSP), the educational pills represent the cities, the paths are the relationships between educational pills, the cost of going from one pill to another can be estimated by their degree of difficulty as well as the performance of the learner during the individual test. The results prove the approach proposal capacity to suggest microlearning path personalized recommendation according to the different levels of knowledge of the learners. The higher the number of learners, the behavior of the algorithm benefits in terms of stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.