Abstract

A simple microkinetic model for the oxidation of methanol on silver based on surface science studies at UHV and low temperatures has been formulated. The reaction mechanism is a simple Langmuir–Hinshelwood mechanism, with one type of active oxygen and one route to formaldehyde and carbon dioxide, respectively. The model explains observed reaction orders, selectivity, apparent activation enthalpies and the choice of industrial reaction conditions. More interesting the model disproves the notion that the mechanism deduced from surface science in UHV cannot be responsible for formaldehyde synthesis at industrial steady-state conditions. The present work therefore seriously questions the prevailing models of formaldehyde synthesis in the literature. One of the reasons for this controversy is that many of the models in the literature are derived from transient experiments exhibiting dynamic effects that are not present at steady state under industrial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.