Abstract

Many vertebrates eavesdrop on alarm calls of other species, which is a remarkable ability, given geographical variation in community composition and call diversity within and among species. We used micro-geographical variation in community composition to test whether individuals recognize heterospecific alarm calls by: (i) responding to acoustic features shared among alarm calls; (ii) having innate responses to particular heterospecific calls; or (iii) learning specific alarm calls. We found that superb fairy-wrens (Malurus cyaneus) fled to cover to playback of noisy miner (Manorina melanocephala) aerial predator alarm calls only in locations where miners were present, suggesting that learning rather than acoustic structure determines response. Sites with and without miners were well within the dispersal distance of fairy-wrens, and philopatric males and dispersing females showed the same pattern, so that local genetic adaptation is extremely unlikely. Furthermore, where miners were present, fairy-wrens responded appropriately to different miner calls, implying eavesdropping on their signalling system rather than fleeing from miners themselves. Learned eavesdropping on alarm calls enables individuals to harvest ecologically relevant information from heterospecifics on an astonishingly fine spatial scale. Such phenotypic plasticity is valuable in a changing world, where individuals can be exposed to new species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.