Abstract

We demonstrate by single-cell microgel electrophoresis that the 2 main techniques, trypsinization and scraping, used to collect normal diploid mammalian cells cultured in monolayer induce DNA damage. To minimize this potential interference with studies on DNA damage and repair, we have standardized the single-cell gel electrophoretic (SCG) technique for the in situ quantitation of DNA single-strand breaks and alkali-labile sites in cultured human fibroblasts. To demonstrate the utility of this technique, human neonatal foreskin-derived fibroblasts were allowed to attach to frosted microscope slides and then either irradiated with X-rays (25–200 rad) or treated for 1 h with hydrogen peroxide (2.2–140.8 μmoles). Treatment with either agent induced a dose-dependent increase in DNA migration, At equal levels of DNA damage, cell-to-cell variability in DNA migration was more heterogeneous for hydrogen peroxide-treated cells than for X-irradiated cells. A time course study to evaluate the kinetics of DNA repair for X-ray (200 rad)-induced damage indicated that the damage was completely repaired within 2 h. Applications of this technique for in vitro toxicology are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.