Abstract
Hemostasis is the process of sealing a vascular injury with a thrombus to arrest bleeding. The type of thrombus that forms depends on the nature of the injury and hemodynamics. There are many models of intravascular thrombus formation whereby blood is exposed to prothrombotic molecules on a solid substrate. However, there are few models of extravascular thrombus formation whereby blood escapes into the extravascular space through a hole in the vessel wall. Here, we describe a microfluidic model of hemostasis that includes vascular, vessel wall, and extravascular compartments. Type I collagen and tissue factor, which support platelet adhesion and initiate coagulation, respectively, were adsorbed to the wall of the injury channel and act synergistically to yield a stable thrombus that stops blood loss into the extravascular compartment in ~7.5 min. Inhibiting factor VIII to mimic hemophilia A results in an unstable thrombus that was unable to close the injury. Treatment with a P2Y12 antagonist to reduce platelet activation prolonged the closure time two-fold compared to controls. Taken together, these data demonstrate a hemostatic model that is sensitive to both coagulation and platelet function and can be used to study coagulopathies and platelet dysfunction that result in excessive blood loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.