Abstract

Digital single-cell assays hold high potentials for the analysis of cell apoptosis and the evaluation of chemotherapeutic reagents for cancer therapy. In this paper, a microfluidic hydrodynamic trapping system was developed for digital single-cell assays with the capability of monitoring cellular dynamics over time. The microfluidic chip was designed with arrays of bypass structures for trapping individual cells without the need for surface modification, external electric force, or robotic equipment. After optimization of the bypass structure by both numerical simulations and experiments, a single-cell trapping efficiency of ∼90% was achieved. We demonstrated the method as a digital single-cell assay for the evaluation of five clinically established chemotherapeutic reagents. As a result, the half maximal inhibitory concentration (IC50) values of these compounds could be conveniently determined. We further modeled the gradual decrease of active drugs over time which was often observed in vivo after an injection to investigate cell apoptosis against chemotherapeutic reagents. The developed method provided a valuable means for cell apoptotic analysis and evaluation of anticancer drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.