Abstract
Cancer is one of the leading causes of death globally. To simulate a similar environment of human tissue is the difficulty in cancer research. The development of 3D culture model is used to imitate the environment to provide a potential research strategy. Matrigel is the most commonly used material for 3D culture models. However, it is derived from murine tumors, unsuitable for clinical applications. In this study, the methacrylated gelatin (GelMA) was blended with type I collagen as a biomaterial in our microfluidic device. We further optimized the device design; it can perform entirely experimental functions without requiring complicated parts such as pumps and valves. On this microfluidic platform, the biocompatible hydrogel and cells could be patterned via liquid dielectrophoresis (LDEP) and dielectrophoretic force (DEP). The experimental results demonstrated that the human lung cancer cells were patterned via both DEP/LDEP and light-curing hydrogel with low cell mortality. The patterned cells' mortality rate is less than 5% after 24 hr of cultivation. Our results suggest the potential of this device for future clinical cancer study applications. Furthermore, we also expect to achieve bionic tumors and explore the interaction between 3D cell models and drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.