Abstract

Single-cell impedance measurement is a label-free, noninvasive method for characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electric impedance flow cytometry (IFC) and electric impedance spectroscopy (EIS) are used alone for most microfluidic chips. In this paper, we present a microfluidic device combining the IFC and EIS techniques for single-cell electrical property measurement. The device uses hydrodynamic constriction to passively trap single cells and uses coplanar electrodes to obtain the impedance spectrum of the trapped cell via EIS and discrete impedance data points of the passing cells via IFC. Through experiment, we verified the individual functionality of IFC and EIS respectively, by revealing through IFC the impedance magnitude difference and quantifying through EIS the area-specific membrane capacitance and cytoplasm conductivity of the three types of cancer cells. We also demonstrated the complementarity of IFC and EIS, which holds for a wide range of the flow rate. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhancing the efficiency of electrical property measurement for single cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call