Abstract

The quantitatively controlled organellar transfer between living single cells provides a unique experimental platform to analyze the contribution of organellar heterogeneity on cellular phenotypes. We previously developed a microfluidic device which can perform quantitatively controlled mitochondrial transfer between live single cells by promoting strictured cytoplasmic connections between live single cells, but its application to other organelles is unclear. In this study, we investigated the quantitative properties of peroxisome transfer in our microfluidic device. When cells were fused through a 10 or 4 μm long microtunnel by a Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel, and a subsequent recovery culture disconnected the fused cells. The peroxisome number being transferred through a 10 μm length of the microtunnel was smaller than that of 4 μm. These data suggest that our microfuidic device can perform a quantitative control of peroxisome transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.