Abstract
Detection of circulating tumor cells (CTCs) in peripheral blood is of paramount significance for early-stage cancer diagnosis, estimation of cancer development, and individualized cancer therapy. Herein, we report the development of hyaluronic acid (HA)-functionalized electrospun chitosan nanofiber (CNF)-integrated microfludic platform for highly specific capture and nondestructive release of CTCs. First, electrospun CNFs were formed and modified with zwitterion of carboxyl betaine acrylamide (CBAA) via Michael addition reaction and then targeting ligand HA through a disulfide bond. We show that the formed nanofibers still maintain the smooth fibrous morphology after sequential surface modifications, have a good hemocompatibility, and exhibit an excellent antifouling property due to the CBAA modification. After being embedded within a microfluidic chip, the fibrous mat can capture cancer cells (A549, a human lung cancer cell line) with an efficiency of 91% at a flow rate of 1.0 mL/h. Additionally, intact release of cancer cells is able to be achieved after treatment with glutathione for 40 min to have a release efficiency of 90%. Clinical applications show that 9 of 10 nonsmall-cell lung cancer patients and 5 of 5 breast cancer patients are diagnosed to have CTCs (1 to 18 CTCs per mL of blood). Our results suggest that the developed microfluidic system integrated with functionalized CNF mats may be employed for effective CTCs capture for clinical diagnosis of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.