Abstract

A perfusion phantom with unique features and a wide variety of applications in MR and other imaging modalities is presented. Using microfabrication technique, a network of microchannels, in the scale of actual microvasculature, was created. The geometry of the network was determined based on Murrays minimum work law to simulate the hemodynamic in actual capillary networks. The perfusion-related parameters, such as flow, volume ratio and the transit time, were precisely calculated using a finite element method based program. These parameters were also estimated through the deconvolution of the residue function from the tissue concentration-time curve in the perfusion model. The widely accepted singular value decomposition (SVD) method in standard, sSVD, and reformulated, rSVD, forms were used for the purpose of the deconvolution and regularization. The accuracy of these methods in the presence of delay and dispersion was investigated. Comparing the estimated values to the true values, the contribution of each of these sources of error to the total error in the estimated perfusion parameters was determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.