Abstract

Electromagnetic (EM) signals are widely used in electronic instruments and biomedical systems and might have affected the human bodies surrounded by them. However, the interaction mechanism of EM signals with biological structures is poorly understood. We propose a micro-fabricated low-frequency EM stimulation lab-on-chip with three-dimensional interdigital electrodes for observation of cell lines with microscope. The field strength between the electrodes at various frequencies is estimated through simulation. An electric field strength of 4.45Vrms/m is reached in the culture medium with a 10Vpp, 10 kHz input signal. According to the simulation results, the high end of the applicable frequency range of the testbench is 3 MHz. A prototype is fabricated using full-wafer microfabrication techniques. The impedance of the prototype between 20 Hz and 30 MHz is characterized. Moreover, human cell line HEK293T is cultured in the testbench for 24 h and observed using microscope to check the biocompatibility of the electrodes. The prototype is thus applicable to long-term microscopic observation of cell lines for study of EM effect on biological structures. The 24-h cell culturing experiment with and without EM stimulation with the proposed prototype shows that the cell growth is obviously affected by a 10 kHz EM signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.