Abstract

Domestic pig molars provide an interesting system to study the biomineralization process. The large size, thick enamel and complex crown morphology make pig molars relatively similar to human molars. However, compared to human molars, pig molars develop considerably faster. Here we use microCT to image the developing pig molars and to decipher spatial patterns of biomineralization. We used mineral grains to calibrate individual microCT-scans, which allowed an accurate measure of the electron density of the developing molars. The microCT results show that unerupted molars that are morphologically at the same stage of development, can be at markedly different stage of enamel biomineralization. Erupted molars show increased electron density, suggesting that mineralization continues in oral cavity. Yet, our comparisons show that human enamel has slightly higher electron density than pig enamel. These results support the relatively low hardness values and calcium level values that have been reported earlier in literature for pig teeth. The mineral calibration was an efficient method for the microCT-absorption models, allowing a relatively robust way to detect scanning artifacts. In conclusions, whereas thin sections remain the preferred way to analyze enamel features, such as incremental lines and crystal orientation, the microCT allows efficient and non-destructive comparisons between different teeth and species.

Highlights

  • The domestic pig (Sus scrofa domesticus) is a plant-dominated omnivore with low-crowned, multi-cusped molars

  • According to Kirkham et al (1988), pig enamel is relatively immature at the time of the tooth eruption, and the surface hardness of erupted pig teeth is “astonishingly low” compared to other domestic animal teeth and human teeth (Karlström, 1931)

  • The first molars of both pigs appear equal electron density, but the dentin layer is slightly thicker in the older pig individual

Read more

Summary

Introduction

The domestic pig (Sus scrofa domesticus) is a plant-dominated omnivore with low-crowned, multi-cusped molars. The relatively fast development of teeth together with their large size and thick enamel makes pig teeth an interesting model for biomineralization studies. The general morphology and tissue structure of pig teeth is closer to human teeth than that of rodent teeth (Robinson et al, 1987; Mlakar et al, 2014). The large size and complex tooth morphology of pig molars, makes them challenging to investigate. We use x-ray microtomography (microCT)-imaging to document the maturation of domestic pig molars, and compare the microCT models with photomicrographs from polished thin sections of the molars. According to Kirkham et al (1988), pig enamel is relatively immature at the time of the tooth eruption, and the surface hardness of erupted pig teeth is “astonishingly low” compared to other domestic animal teeth and human teeth (Karlström, 1931)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call