Abstract

BackgroundHeterotopic ossification (HO) is a frequent and debilitating complication of traumatic musculoskeletal injuries and orthopedic procedures. Prophylactic dosing of botulinum toxin type A (BTxA) holds potential as a novel treatment option if accurately distributed throughout soft-tissue volumes where protection is clinically desired. We developed a high-resolution, microcomputed tomography (microCT)-based imaging strategy to assess drug distribution and validated this platform by quantifying distribution achieved via a prototype delivery system versus a single-bolus injection.MethodsWe injected an iodine-containing contrast agent (iodixanol 320 mg I/mL) into dissected rabbit musculature followed by microCT imaging and analysis. To contrast the performance of distributed versus bolus injections, a three-dimensional (3D) 64-cm3-printed soft-tissue holder was developed. A centered 2-cm3 volume of interest (VOI) was targeted with a single-bolus injection or an equal volume distributed injection delivered via a 3D-printed prototype. VOI drug coverage was quantified as a percentage of the VOI volume that was < 1.0 mm from the injected fluid.ResultsThe microCT-based approach enabled high-resolution quantification of injection distribution within soft tissue. The distributed dosing prototype provided significantly greater tissue coverage of the targeted VOI (72 ± 3%, mean ± standard deviation) when compared to an equal volume bolus dose (43 ± 5%, p = 0.031) while also enhancing the precision of injection targeting.ConclusionsA microCT-based imaging technique precisely quantifies drug distribution within a soft-tissue VOI, providing a path to overcome a barrier for clinical translation of prophylactic inhibition of HO by BTxA.Relevance statementThis platform will facilitate rapid optimization of injection parameters for clinical devices used to effectively and safely inhibit the formation of heterotopic ossification.Key points• MicroCT provides high-resolution quantification of soft-tissue drug distribution.• Distributed dosing is required to maximize soft-tissue drug coverage.• Imaging platform will enable rapid screening of 3D-printed drug distribution prototypes.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.