Abstract

Pollution of aquatic ecosystems with nonylphenol (NP) and butyltins (BuTs) is of great concern due to their effects on endocrine activity, toxicity to aquatic organisms, and extended persistence in sediments. The impact of contamination with NP and/or BuTs on the microbial community structure in marine sediments was investigated using microcosms and high-throughput sequencing. Sediment microcosms with NP (300 mg/kg) and/or BuTs (95 mg/kg) were constructed. Complete removal of monobutyltin (MBT) occurred in the microcosms after 240 days of incubation, while a residual NP rate was 40%. The content of toxic tributyltin (TBT) and dibutyltin (DBT) in the sediments did not change notably. Co-contamination of the sediments with NP and BuTs did not affect the processes of their degradation. The pollutants in the microcosms could have been biodegraded by autochthonous microorganisms. Significantly different and less diverse bacterial communities were observed in the contaminated sediments compared to non-contaminated control. Firmicutes and Gammaproteobacteria dominated in the NP treatment, Actinobacteria and Alphaproteobacteria in the BuT treatment, and Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Acidobacteria in the NP-BuT mixture treatment. The prevalence of microorganisms from the bacterial genera Halothiobacillus, Geothrix, Methanosarcina, Dyella, Parvibaculum, Pseudomonas, Proteiniclasticum, and bacteria affiliated with the order Rhizobiales may indicate their role in biodegradation of NP and BuTs in the co-contaminated sediments. This study can provide some new insights towards NP and BuT biodegradation and microbial ecology in NP-BuT co-contaminated environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call