Abstract

To meet the urgent demands for sustainable and efficient, environmental-friendly wastewater treatment, a Microbial fuel cell reactor system with MnO2/TiO2/g-C3N4 (manganese dioxide/ titanium dioxide/graphitic carbon nitride) @GAC (granular activated carbon) electrode was developed. It was both efficient and energy-saving in treating organic acid wastewater generated in Nylon production, with high-concentration COD and residual nitric acid. The MnO2/TiO2/g-C3N4 catalyst was deposited on GAC via in-situ growth and sol-gel method. The COD, NH4+-N and NO3−-N was efficiently removed (respectively 98%, 99% and 99%). The COD removal capacity (17.77 kg COD m−3d−1) and the maximum power density (1176.47 mW m−3) was respectively 36.83% and 65.29% higher than the GAC cathode system. The anodic and cathodic microbial consortiums in MFC were analyzed and compared. The MnO2/TiO2/g-C3N4@GAC MFC system is technically feasible and cost-effective in treating industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.