Abstract
The dissolved oxygen (DO) level has been shown to have a profound effect on the product distribution of a Bacillus subtilis culture, with acetoin being excreted with DO above 100 parts per billion (ppb) and butanediol below 100 ppb. The product concentration ratio changed rapidly in the 80-90 ppb range. Switching from one oxygen level to another caused one already accumulated product to be converted to the other in a reversible manner. Rates of change of 0.5-1 g/L h enabled detection within 10 min. Detection sensitivity is enhanced because the ratio of two concentrations can be measured. Remarkably sensitive to mixing rates, the culture responded to changes in stirring speed during experiments in which the dissolved oxygen was controlled at a constant level with a novel control system. Thus, the culture is capable of detecting dead zones in relatively well-mixed reactors and oxygen gradients in column and tubular reactors. High-viscosity effects can also be investigated since the culture grows well in xanthan gum solutions. Preliminary kinetic model development indicates that a useful model for simulating reactor mixing and transport effects can be developed to aid in the planning of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.