Abstract
In this study, a micro scale non-linear Timoshenko beam model based on a general form of strain gradient elasticity theory is developed. The von Karman strain tensor is used to capture the geometric non-linearity. Governing equations of motion and boundary conditions are derived using Hamilton's principle. For some specific values of the gradient-based material parameters, the general beam formulation can be specialized to those based on simple forms of strain gradient elasticity. Accordingly, a simple form of the microbeam formulation is introduced. In order to investigate the behavior of the beam formulation, the problem of non-linear free vibration of a simply-supported microbeam is solved. It is shown that both strain gradient effect and that of geometric non-linearity increase the beam natural frequency. Numerical results reveal that for a microbeam with a thickness comparable to its material length scale parameter, the effect of strain gradient is higher than that of the geometric non-linearity. However, as the beam thickness increases, the difference between the results of the classical beam formulation and those of the gradient-based formulations become negligible. In other words, geometric non-linearity plays the essential role on increasing the natural frequency of a microbeam having a large thickness-to-length parameter ratio. In addition, it is shown that for some microbeams, both geometric non-linearity and size effect have significant contributions on increasing the natural frequency of non-linear vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.