Abstract
Cr2O3 nanoparticles, widely used in the industry, can be obtained by calcination of the nanoparticles synthesized via the hydrothermal method. The chemical nature and the morphology of as‐prepared and calcined nanoparticles are investigated by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. Our results indicate that the as‐prepared nanoparticles mainly consist of amorphous and hydrated Cr(OH)3, with only minor amounts of Cr2O3. By contrast, and as already known before, calcined nanoparticles consist of Cr2O3. We also demonstrate the effect of inappropriately chosen experimental conditions, because the use of laser intensities above 0.7 mW during the Raman experiments causes a local heating and thus induces the transformation of Cr(OH)3 into Cr2O3. The correlation between the laser power and a local heating is further corroborated by thermogravimetric analyses, which show that upon increased temperature, Cr(OH)3 first dehydrates and then partially condensates to the intermediate CrO(OH) form, to finally attain the crystalline form of Cr2O3 at about 409 °C. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.