Abstract

The thermal management of high-heat-density devices is essential for reliable operation. In this work, a novel procedure is proposed and investigated for the efficient thermal management of such devices. The proposed procedure introduces different arrangements of metal inserts within a cooling channel heat sink. The objective of those inserts is to form boundary layers to prevent any hot spots from appearing within the flow and increase temperature uniformity. Five different arrangements are introduced and numerically investigated using the commercial software package ANSYS FLUENT 2021R1. The model was validated against previous findings and showed a good agreement with errors of less than 5.5%. The model was then used to study the heat transfer characteristics of the proposed cases compared to traditional straight channels under the same operating conditions. All the proposed arrangements displayed better heat transfer characteristics than the traditional configuration within the studied range. They also exhibited lower temperature nonuniformities, implying better temperature distribution. The temperature contours over the heat source top surface and the flow streamlines are also introduced. Among all the proposed arrangements cases, a microchannel with micro metal insert located at the top wall along with a second row of inserts covering two-thirds of the bottom wall is studied. This case achieved the best heat transfer characteristics and highest temperature uniformity, making it a viable candidate for high power density devices’ thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.