Abstract

A two-dimensional micro/macroscale model is proposed as an efficient numerical framework for simulating intermediate temperature solid oxide fuel cells (IT-SOFCs). This model employs a comprehensive microscale model that describes the detailed electrochemical reactions in Ni/YSZ cermet anodes and LSM/YSZ composite cathodes based on the three-phase boundary length (TPBL). A simplified macroscale model has been combined with the microscale model to consider the heat and mass transport processes in IT-SOFCs with prescribed fully-developed laminar velocity profiles in gas channels. A hydrogen-fed IT-SOFC is simulated at various operating conditions in order to demonstrate the capabilities of the proposed micro/macroscale model. The results elucidate the effects of co- and counter-flow configurations, inlet temperature, and air and fuel flow rates on the performance of the IT-SOFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call