Abstract

We present a nonlinear method to approximate solutions of a Burgers–Huxley equation with generalized advection factor and logistic reaction. The equation under investigation possesses travelling-wave solutions that are temporally and spatially monotone functions; the travelling-wave fronts considered are bounded and connect asymptotically the stationary solutions of the model. For the linear regime, the method is consistent of first order in time and second order in space. In the nonlinear scenario, we investigate conditions under which bounded initial profiles evolve into bounded new approximations. The main results report on parametric conditions that guarantee the boundedness, the positivity and the monotonicity preservation of the method. As a consequence, our recursive method is capable of preserving the temporal and the spatial monotonicity of the solutions. We provide simulations that show that, indeed, our technique preserves the positivity, the boundedness and the temporal and spatial monotonicity of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.