Abstract

Here, we have proposed a predator–prey model with Michaelis–Menten functional response and divided the prey population in two subpopulations: susceptible and infected prey. Refuge has been incorporated in infected preys, i.e. not the whole but only a fraction of the infected is available to the predator for consumption. Moreover, multiplicative Allee effect has been introduced only in susceptible population to make our model more realistic to environment. Boundedness and positivity have been checked to ensure that the eco-epidemiological model is well-behaved. Stability has been analyzed for all the equilibrium points. Routh–Hurwitz criterion provides the conditions for local stability while on the other hand, Bendixson–Dulac theorem and Lyapunov LaSalle theorem guarantee the global stability of the equilibrium points. Also, the analytical results have been verified numerically by using MATLAB. We have obtained the conditions for the existence of limit cycle in the system through Hopf Bifurcation theorem making the refuge parameter as the bifurcating parameter. In addition, the existence of transcritical bifurcations and saddle-node bifurcation have also been observed by making different parameters as bifurcating parameters around the critical points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.