Abstract

In the first part of this study, a theoretical investigation of an improved modal approach and a complete error analysis of the proposed modal dominancy metric were presented. In this part the problem of metric non-uniqueness for systems with multiple eigenvalues is described and a method to circumvent this problem based on spatial distribution of either the sensors or the actuators is proposed. This technique is implemented using QR factorization without solving Lyapunov equations. Moreover, the method is improved such that it is able to use the information extracted from spectral properties of the input. Also in order to make the method more effective, information extracted from the input internal structure is incorporated in the modal ranking process. It is shown that this improvement is particularly effective in problems with high-dimensional input and/or output space such as in distributed loading and moving load problems. Finally the performance of the method is validated for a high order system subjected to a high-dimensional input force. That originates from a railway track moving load problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.