Abstract

BackgroundEpigenetic modifications of the fragile X mental retardation 1 (FMR1) gene locus may impact the risk for reproductive and neurological disorders associated with expanded trinucleotide repeats and methylation status in the 5′ untranslated region. FMR1 methylation is commonly assessed by Southern blot (SB) analysis, yet this method suffers a cumbersome workflow and relatively poor sizing resolution especially for premutation allele characteristic for fragile X-associated disorders. In this study, a methylation PCR (mPCR) assay was used to evaluate correlations among genotype, epitype, and phenotype in fragile X premutation (PM) carrier women in order to advance the understanding of the association between molecular determinants and the presence of fragile X-associated tremor and ataxia (FXTAS).ResultsActivation ratios (ARs) in 39 PM women were determined by mPCR and compared with SB analysis. ARs were distributed across a range of values including five samples with <20% AR and six with >80% AR. The two methods were correlated (R 2 of 0.87 and F test of <0.001), indicating that mPCR can measure AR in agreement with established assays. However, mPCR was unique in identifying novel and distinct patterns of methylation mosaicism in premutation carrier women, including seven sibling pairs that were assessed using FXTAS clinical rating scales. Of note, four of six pairs with defined age of onset for neurological signs showed ARs consistent with skewed activation of the pathogenic expanded allele. One subject with severe FXTAS had a mosaic full mutation allele identified using mPCR but not detected by SB analysis.ConclusionsWe utilized a repeatable and streamlined methodology to characterize FMR1 inactivation in premutation carrier women. The method was concordant with SB analysis and provided higher resolution information on allele and methylation mosaicism. This approach can facilitate the characterization of epigenetic factors influencing fragile X phenotypes in larger cohort studies that can advance understanding and treatment of fragile X-associated disorders.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-016-0280-8) contains supplementary material, which is available to authorized users.

Highlights

  • The expansion of trinucleotide cytosine-guanine-guanine (CGG) repeats and methylation status of the fragile X mental retardation 1 (FMR1) gene are implicated in a number of developmental, neurodegenerative, and reproductive disorders

  • Expansions exceeding 200 CGG repeats are associated with hypermethylation of the promoter region, transcriptional silencing of the gene, and reduction or absence of expression of the FMR1 protein (FMRP), which result in fragile X syndrome (FXS)

  • We extend the use of methylation PCR (mPCR) to the assessment of FMR1 activation ratios (AR) in female PM carriers to evaluate potential correlation with and improvements over Southern blot (SB) analysis

Read more

Summary

Introduction

The expansion of trinucleotide cytosine-guanine-guanine (CGG) repeats and methylation status of the fragile X mental retardation 1 (FMR1) gene are implicated in a number of developmental, neurodegenerative, and reproductive disorders. Intermediate alleles have been associated with the Parkinson disease and other disorders [8] The risks for these disorders and the potential severity of relevant phenotypes are typically more pronounced in males because of a single X chromosome. In females, epigenetic influences such as X-chromosome inactivation (XCI), may impact the risks, age of onset, and severity of FXS, FXTAS, or FXPOI, as for other X-chromosome disorders [9]. Epigenetic modifications of the fragile X mental retardation 1 (FMR1) gene locus may impact the risk for reproductive and neurological disorders associated with expanded trinucleotide repeats and methylation status in the 5′ untranslated region. A methylation PCR (mPCR) assay was used to evaluate correlations among genotype, epitype, and phenotype in fragile X premutation (PM) carrier women in order to advance the understanding of the association between molecular determinants and the presence of fragile X-associated tremor and ataxia (FXTAS)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.