Abstract

Folate and methyl-group deficiency has been linked to prostate cancer susceptibility, yet the mechanisms underlying these observations are incompletely understood. The region of the genome containing the imprinted genes insulin-like growth factor 2 (Igf2) and H19, both of which display oncogenic functions, may be particularly sensitive to environmental influences. To determine whether a methyl-deficient diet impacts epigenetic controls at the Igf2-H19 locus, we placed C57BL/6 mice containing a polymorphism at the imprinted Igf2-H19 locus on a choline and methionine deficient (CMD) diet. We interrogated this locus for expression and epigenetic changes in prostate tissues. A significant increase in both Igf2 and H19 expression was found in CMD prostate tissues compared to controls. These expression changes were reversible with shorter exposure to the CMD diet. Chromatin immunoprecipitation (ChIP) revealed significant decreases in repressive histone modifications (dimethyl-H3K9) within the H19 promoter, as well as Igf2 P2 and P3 promoters. DNA methylation within these promoters was not altered. No significant change in Igf2 or H19 imprinting was observed. These findings highlight the plasticity of the epigenome in an epithelial organ vulnerable to neoplastic change. They further suggest that chromatin modifications are more susceptible to methyl-deficient diets than DNA methylation at this locus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.