Abstract

This paper describes the implementation of a level control strategy in a laboratory-scale flotation system. The laboratory-scale system consists of a bank of three flotation tanks connected in series, which mimics a flotation system found in mineral processing plants. Besides the classical feedback control strategy, we have also included a feedforward strategy to better account for process disturbances. Results revealed that the level control performance significantly improves when a feedforward strategy is considered.This methodology uses peristaltic pumps for level control, which has not been extensively documented even though: (1) peristaltic pumps are commonly used in laboratory-scale systems, and (2) the control implementation is not as straightforward as those control strategies that use valves. Therefore, we believe that this paper, which describes a proven methodology that has been validated in an experimental system, can be a useful reference for many researchers in the field.•Preparation of reagents to ensure that the froth stability of the froth layer is representative of an industrial flotation froth.•Calibration of instruments – convert the electrical signal from PLCs to engineering units.•Tuning PI parameters using SIMC rules by performing step-changes in each flotation cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.